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ABSTRACT: New nanocomposites are processed with a plasticized poly(vinyl chloride)
matrix reinforced by cellulose whiskers whose characteristics are a high aspect ratio
and a large interface area. Dynamic mechanical analysis performed on samples rein-
forced with a filler fraction of up to 12.4 vol % gives the viscoelastic properties of the
composite above and below its glass transition temperature. Different theoretical
predictions are proposed to describe this behavior, but none of them is found wholly
satisfactory for describing the reinforcing effect of these fillers. A model based on the
Halpin–Kardos equation, with the assumption of an immobilized phase around the
whiskers, is developed to account for significant decrease in the modulus drop, on
passing above the glass transition temperature. The small discrepancy between this
model and the experimental modulus measured in the rubber plateau is discussed as a
possible effect of a percolating whisker network whose crosslinks are assured by chains
adsorbed onto the whisker surface. Swelling experiments support this hypothesis.
© 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1797–1808, 1999
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INTRODUCTION

Many cellulosic products, such as wood shavings,
have long been used as a filler in polymers, in
order to decrease their cost without degrading
their mechanical properties. For 20 years, cellu-
lose fibers such as wood fibers or cotton have been
increasingly studied for their potential as rein-
forcement agents in composites. They combine
good mechanical properties, that is, a strength
and a modulus of the same order of those of min-
eral fillers, with the advantages of cellulose,

which is biodegradable and renewable.1 Nowa-
days, cellulose fibers are used as fillers in the
majority of resin composites;2 they are also used
in rubber composites.3 For several years, thermo-
plastic composites reinforced with cellulose fibers
have been the subject of increasing interest.4–6

The literature on these materials focuses on the
problem of the dispersion of the fibers during
processing and on the compatibility between cel-
lulose, which is hydrophilic, and the hydrophobic
polymer matrix.

Due to the high viscosity of the matrix fiber
mixture during the processing (although this lat-
ter occurs largely above Tg), it is very difficult to
avoid fiber aggregates. The fibers are generally
long and entangled, and too strong a mechanical
dispersion process can lead to a dramatic de-
crease in their length and, therefore, in their re-
inforcing properties.7 Lastly, the wettability of
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the polar cellulose is problematic with usually
nonpolar synthetic polymer,8 leading also to an
agglomeration of the fibers in the composite. The
solutions proposed by different authors consist
generally in grafting on the fiber surfaces with
polymers, which assures a better affinity with the
matrix and/or a better dispersion.9,10 One of the
solutions we explored to solve these problems was
to use a dispersion step of fibers in the matrix, in
an aqueous suspension. Thus, both fillers and
polymer matrix must be prepared in aqueous me-
dium, and both suspensions must be stable, at
least during the time necessary for mixing of the
two components.11,12 By this method, if the fibers
are sufficiently well dispersed in the aqueous me-
dium, it seems possible to avoid aggregate forma-
tion after evaporation of the water.

Suspension, microsuspension and emulsion
processes are widely used in industry to produce
polymers in an aqueous medium. The polymer
synthesized by this way is obtained, before the
drying step, as microdroplets in a water suspen-
sion, with the stability being provided by suspen-
sion or emulsifying agents. Two types of cellulose
nanoscopic fibers have been made in our labora-
tory. One is derived from pulps of sugar beets.13

The suspensions obtained are stable. The nano-
scopic size of these fibers make possible the pro-
cessing of small thickness composites and a pos-
sible transparency of the final product. Moreover,
their very large aspect ratio and their mechanical
properties provide them with a great industrial
potential for the reinforcement of polymer matri-
ces. Due to their shape of infinitely long and flex-
ible fibers, it is, however, more difficult to study
their reinforcing effect in polymer than it would
be with rigid rods. That is the reason why we
preferred to study cellulose whiskers as a prelim-
inary approach. They have the same nanoscopic
size, a large aspect ratio, and a high modulus.
They are rod-shaped monocrystals prepared, in
this case, from tunicates. Whiskers were firstly
studied by Favier and coworkers,12,14 who was
interested in their reinforcing effect in a poly(sty-
rene–butyl acrylate) matrix. She showed a dras-
tic improvement of the composite modulus in the
rubbery state of the matrix. This effect was at-
tributed to the formation of a whisker network
linked by hydrogen bonds between the cellulose
whiskers.

The aim of the present study is to understand
the effect of these fillers still in thermoplastic
matrix but when the process, different from the
simple casting described by Favier, includes hot-
mixing and hot-moulding, which should avoid the

formation of the hydrogen-bonded network. Com-
posites with different whisker contents are pre-
pared. For both fundamental and industrial in-
terest, plasticized poly(vinyl chloride) (PVC) is
chosen as the matrix. Dynamic mechanical mea-
surements and tensile tests are performed to es-
timate the viscoelastic behavior of the materials
as a function of temperature. Different models
usually used for composites are presented and
discussed. The hypothesis of the existence of a
flexible network is also evoked, highlighted by
swelling experiments and a theoretical estima-
tion by finite element modelling of the lower and
upper limits of such a network modulus.

EXPERIMENTS

Materials

The cellulose whiskers are obtained from sea an-
imals, namely, tunicates, after a treatment de-
scribed by Sassi.15 The final aqueous suspension
of whiskers does not sediment or flocculate due to
the electrostatic repulsion between the surface
sulphate groups grafted during the sulphuric acid
treatment. The whisker average dimensions, de-
termined by transmission electron microscopy,
are 1 mm length and 15 nm diameter.

The PVC was supplied by Elf-Atochem (isotac-
ticity 19%; syndiotacticity 34%; molecular weight
M# n 5 40000; polymolecularity indice Ip 5 2).
The whiskers suspension was blended with the
PVC microsuspension (bead diameter 0.2 mm)
and then freeze-dried. The blend of this freeze-
dried powder, 30 phr (that is, per hundred ratio of
PVC) of plasticizer [di-ethyl-hexyl phthalate
(DOP), provided by Elf-Atochem], 4.5 phr of tin
stabilizer (CIBA-GEYGY), and 1.5 phr of lubri-
cant (stearic-acid-based compound), was pro-
cessed by hot-mixing at 180°C during 5 min in a
Brabender mixer. This mixture was then pressed
into sheets by compression moulding at 200°C
during 3 min. We made composites with 0, 6, 9,
12, 16, and 24 phr, that is, 0, 3.4, 5, 6.6, 8.4, and
12.4% respectively, by volume of whiskers con-
tents. In the present article, plasticized PVC ma-
trix will be called pPVC.

Preliminary Characterization

Differential scanning calorimetry (DSC; Perkin–
Elmer DSC7 system) was used to determine the
glass transition temperature. Typical sample
weight was 15 mg. The analysis was done from
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190 to 380 K with a heating rate of 10 K/min. The
presence of plasticizer strongly increases the
width of the transition.16 The temperature of the
transition beginning Tg1 was found to be 261 K;
the temperature of the transition ending Tg4 was
305 K. Similar temperatures were found for the
composites, and were independent of the whisker
content.

The composite films remain transparent, even
at 12.4 vol % of whiskers. Due to their size, the
whiskers only appear as luminous point under
scanning electron microscopy (SEM). However,
this technique seems to show a good dispersion of
the whiskers. The use of the electron transmis-
sion microscopy was impossible since no suffi-
ciently thin microtome was available.

Small angle X ray scattering (SAXS) and small
angle neuron scattering (SANS) were performed
on the composites. The results are described in
other references.17 It lead to the conclusion that
we had an isotropic dispersion of the filler without
aggregates. The isotropic character of the whisker
dispersion was also confirmed by comparisons
and analogies with the description of whisker-
filled composites described in Hajji et al.18

A study, by transmission electron microscopy
(TEM), of whiskers extracted of the composite17

allowed confirmation that the typical length of
the whiskers was not modified during the process-
ing of the composites.

Study of Materials

Mechanical Tests

Mechanical behavior was measured with a me-
chanical spectrometer described previously.19 It
consisted of a forced oscillation pendulum, work-
ing in the temperature range of 100 to 700 K and
the frequency range of 5 3 1025 to 5 Hz. Since the
maximum strain was less than 1024, the vis-
coelastic behavior of the samples was considered
independent of the applied stress over the whole
strain amplitude range in all temperature ranges
used for the experiments. The storage (G9) and
loss (G0) moduli of the complex shear modulus
(G*) and the internal friction tan f (G0/G9) were
measured as a function of temperature T, be-
tween 100 and 420 K, for a fixed frequency of 0.1
Hz. Resolution for tan f was better than 5 3 1024.
Sample dimensions were about 15 mm length, 6
mm width, and 1.5 mm thickness.

The error made on the thickness of the samples
lead to a three times higher uncertainty on the
modulus value from shear tests. Therefore, micro-
tensile tests were performed on a RSA II Rheo-

metrics. The strain rate was 1024 s21. The testing
temperature was 240 K. The tensile modulus E
was deduced from the slope at the origin of the
stress–strain curve. The shear modulus was cal-
culated through the equation G 5 E/ 2(1 1 n)
with n, the Poisson ratio, equal to 0.35.

Swelling Experiments

Swelling is a method currently used to determine
if fillers create supplementary crosslinks inside a
composite.20,21 The choice of the solvent used is of
importance. This latter must be a good solvent of
the matrix to allow its swelling or its dissolution,
but it must not be able to break the eventual links
between the matrix and the filler. If this last
condition is not respected, the experiments can-
not be conclusive.

Tetrahydrofuran (THF) or ketones are known
to be good solvents for PVC.22 Preliminary tests of
swelling with THF were inconclusive: composites
immersed in THF were fractionated in little ag-
gregates, which were impossible to weigh. This
solvent might be strong enough to break the links
between the matrix and the whiskers. Therefore
methyl ethyl ketone was used.

Cubic-shaped samples of about 30 g weight
were immersed in methyl ethyl ketone for 2
weeks. The solvents were changed every day for
the first 3 days. To be sure that 2 weeks were
sufficient for the samples to reach their equilib-
rium, kinetic experiments were performed, which
consisted of measuring the weight of the samples
as a function of time. It was found that equilib-
rium was reached after only 2 days. It was also
checked that the experiments were weight-inde-
pendent by recording the same swelling ratio for
samples weighing from 15 up to 50 g. Once swol-
len, the samples were weighed after a drying step,
which consisted of putting them under vacuum at
60°C for 1 day (60°C is 40°C below the initial Tg of
the samples). DSC scanning showed an increased
Tg of the samples, independent of filler concentra-
tion. This was due to an extraction of plasticizer
by the solvent. Thus, all the samples were found
to lose about 60% plasticizer during experiment
(this percentage was deduced from their glass
transition temperature). This was taken into ac-
count, as was the weight of the whiskers, for the
calculation of the swelling ratio Qm, by subtract-
ing these two weights to the final weight of the
dry samples. Qm was given by the following rela-
tion:

Qm 5 1 1
rm

rs
SWm 2 Wf

Wd 2 Wf
2 1D (1)
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rm and rs are, respectively, the density of the
composite and of the solvent, as follows: rm
5 1.35, and rs 5 0.8. Wm is the swollen sample
weight, Wf is the weight of the whiskers inside
the composite, Wd is the dry sample weight.

RESULTS AND DISCUSSION

Elastic Behavior

Dynamic mechanical analysis (DMA) experi-
ments were performed on the composites rein-
forced with 3, 5, 6.6, 8.4, and 12.4 vol % of whis-
kers. The elastic modulus as a function of the
temperature is shown in Figure 1. Below Tg, the
increase of the modulus with whisker content is
moderate. By contrast, the whiskers efficiency
above Tg is drastically high. The slope of the
rubber plateau is slightly higher for the composite
than for the matrix. This can be explained by an
increasing contrast between the fiber and the ma-
trix modulus when the matrix modulus decreases.
Indeed, this contrast is known to have a great
influence on the reinforcement effect of the fillers.
However, the difference between the slopes is
small. This excludes the presence of a rigid whis-
kers network.19 For a higher temperature, that is,

the temperature of pPVC flow, the flow of the
composite is observed in the same temperature
range as for pure pPVC.

Figures 2 and 3 show the shear modulus as a
function of the fillers volume fraction, respec-
tively, at 235 (below Tg) and 380 K (above Tg).
They are compared with two theoretical models,
the Halpin–Kardos one,23 and the cluster model
developed by Molinari and El Mouden.24

The Halpin–Kardos Model

The Halpin–Kardos model considers the compos-
ite as a quasi-isotropic short-fiber laminate con-

Figure 1 Shear elastic modulus measured by Dy-
namic Mechanical Analysis (frequency 5 0.1 Hz) of
composites reinforced with 0% (D), 3% (»), 5% (3), 6.6%
(e ), 8.4% (1), 12.4% vol. (E) of whiskers.

Figure 2 Elastic modulus E measured below Tg, at
235 K (F ) and theoretical modulus deduced from Reuss
(● ● ●) and Voigt (● ● ●) bounds, the Halpin Kardos
model (– – –) and the “cluster” model ( ).

Figure 3 Elastic modulus E measured at 380 K
(above Tg); same legend as for Figure 2.
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sisting of a thickness-symmetric arrangement of
4 plies of unidirectional material making angles
of p/4 with respect to each other. The mechanical
properties of each unidirectional ply is given by
the following:25

Eii

Gm
5

2Efii~1 1 nm!~1 1 jiiXf!
1 4jii~1 1 nm!2~1 2 Xf!Gm

Efii~1 2 Xf! 1 2~jii 1 Xf!~1 1 nm!Gm

G12

Gm
5

Gf~1 1 j12Xf! 1 j12~1 2 Xf!Gm

Gf~1 2 Xf! 1 ~jii 1 Xf!Gm
(2)

where Efii is the Young modulus of the fiber in the
direction i (i 5 1, 2), Gf and Gm are the shear
modulus of the fiber and the matrix, nm is the
matrix Poisson factor, and Xf is the fiber volume
fraction. jii depends on L, l, and e, which are the
length, the width, and the thickness of the fibers,
respectively, as follows:

j11 5 2SL
e D j22 5 2S l

eD j12 5 S l
eD

Î3

These results are inserted by a macromechanic
approach into the quasi-isotropic calculation
(laminates description), giving finally

G 5
E11 1 E22~1 2 n12!

8~1 2 n12n21!
1

G12

2 (3)

where the Poisson factors are

n12 5 Xfnf 1 ~1 2 Xf!nm and n21 5 n12

E22

E11

with nf, as the fiber Poisson factor.
The Halpin–Kardos model, firstly developed to

describe semicrystalline polymers, has been vali-
dated since its creation by experimental measure-
ments12,26 and has been shown to be correct
whether the fibers are randomly oriented in plane
or in volume. The advantage of this model is to
propose a simple analytic expression for the com-
posite modulus, which take into account the form
factor and the anisotropy of the mechanical prop-
erties of the inclusions and which can be easily
extended to a viscoelastic description of the ma-
terial. But the Halpin–Kardos model does not
take into account the mechanical interaction be-
tween the fibers.

The Cluster Model

Conversely, the cluster model takes into account
these interactions. This model can be seen as a
refinement of the classical models based on inclu-
sion calculations (for example, self-consistent
models). Moreover, the cluster model has the ad-
vantage over more classical homogenization tech-
niques as it accounts for the effects of both the
morphology of the reinforcing fibers and their
spatial distribution. It can be described as follows.
A set of 100 fibers (or inclusions) Vf randomly
spread and oriented in an elementary cube of
length L is used, and this elementary volume is
reproduced in the three directions of space. A
cluster Cf is then defined by a spherical volume of
radius Rc, which acts as the representative vol-
ume element (RVE), that is, the one in which the
mechanical properties are identical to the corre-
sponding macroscopic ones. It is possible to dis-
cretize the space and, assuming uniformity of
strain inside the fibers, to obtain the localization
equations for each fiber f, as follows:

«f 5 E 1 O
f
9

Gff
9
: ~dLf

9
!«f

9
1 E0 : O

f
9

Xf
9
dCf

9
: «f

9

(4)

where E is the macroscopic elastic strain and Xf is
the volume fraction of the fiber f in the RVE. E0 is
the average strain in the matrix taken as the
reference medium. dCf, is the difference between
the rigidity tensor of the fiber f9 (Cf9) and the one
of the matrix (Cm). This is a linear system of
equations with unknown «f, with the coupling
tensors between pairs of fibers f and f9, defined as

Gff
9
5

1
Vf
E

Vf

E
Vf

9

G~r 2 r9!drdr9 (5)

which is a double integral over the volumes Vf
and Vf9. G(r 2 r9) is the Green operator associ-
ated with the rigidity tensor of the matrix. The
interest of the tensor Gff9 is to include both the
morphology and the spatial distribution of f and
f9. Writing the average conditions both on strains
and stresses leads to the following global stiff-
ness:

Ceff 5 XmCm : Lm 1 O XfCf : Lf (6)

with Lm and Lf, the localization tensors, given by
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«f 5 Lf : E and «m 5 Lm : E

Molinari and El Mounden have shown that this
method converges towards the exact solution
when the cluster size increases. In our case, Rc
5 3L/ 2 seemed to be a sufficiently high value to
obtain a convergence of the calculated results.

Comparison Between Experiments and Theoretical
Predictions

Calculations with these two models have been
made using the parameters respectively listed in
Tables I and II and deduced from literature.27–32

For the cluster model, we used the program de-
veloped in the GPM2 laboratory of the ENSPG by
G. Canova. It was modified to take into account

the anisotropy of the mechanical properties of the
cellulose whiskers through the definition of their
elastic tensor (that is, the elastic tensor of a rigid
fiber).

The results of the calculation below Tg (235 K)
are plotted in Figure 2 with the basic calculation
of the Reuss and Voigt boundaries. The models
give quite different predictions. Taking into ac-
count the anisotropy of the whisker mechanical
properties does not significantly change the re-
sults calculated with the cluster model. Indeed,
like in Favier et al.,12 in which this anisotropy
was not taken into account, the same under-esti-
mation of the composite modulus is found. On the
other hand, the Halpin–Kardos prediction largely
overestimates the data. Peyroux33 found that the

Table I Parameters Used for the Halpin–Kardos Modelling

Symbol Designation Value

Ef11 Longitudinal modulus of the cellulose whiskers 130 GPaa

Ef22 Transverse modulus of the cellulose whiskers 15 GPab

Gm Shear modulus of the matrix 0.74 GPa (at 235 K)
0.53 MPa (at 280 K)

Gf Shear modulus of the fiber 5 GPac

j11 133d

j22 2d

j12 1d

nf Fiber Poisson factor 0.3
nm Matrix Poisson factor 0.35 (at 235 K)

0.5 (at 280 K)

a Average values of the literature.27–32

b They are the lowest value of the 2 transverse modulus of the whiskers30 since the Halpin–Kardos model is bidimensional.
c The average value of the shear modulus in the 2 transverse directions.30

d Deduced from the average whisker dimensions.

Table II Parameters Used for the Cluster Modelling

Symbol Designation Value

El Longitudinal modulus of the cellulose whiskers 130 GPaa

Gm Shear modulus of the matrix 0.74 GPa (at 235 K)
0.53 MPa (at 280 K)

Gtt Shear modulus of the cellulose whiskers
(transverse direction)

5 GPac

Glt Shear modulus of the cellulose whiskers
(longitudinal direction)

5 GPac

Kl Compression modulus of the whiskers 12.5 GPaa

N Number of whiskers 100
f Form factor of the whiskers 1/67d

a Average values of the literature.27–32

b They are the lowest value of the 2 transverse modulus of the whiskers31 since the Halpin–Kardos model is bidimensional.
c The average value of the shear modulus in the 2 transverse directions.31

d Deduced from the average whisker dimensions.
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Halpin–Tsai model, on which the Halpin–Kardos
equation is based, gives results above the classi-
cal self-consistent models. This is probably even
enhanced by the quasi-isotropic laminate repre-
sentation of the composite. However the model
was firstly used to describe a semicrystalline poly-
mer in which the inclusions are randomly ori-
ented in the volume. Therefore, this representa-
tion is a priori valid for our composite, as it has
been validated in several studies. Due to the high
modulus of the matrix below Tg, the aspect ratio
value has very little effect on the calculated re-
sults. Moreover, transmission electron micros-
copy (TEM) of whiskers extracted from the com-
posites showed that the process did not modify
their typical dimensions.17 Therefore, a possible
decrease of the whiskers length during processing
cannot be an explanation of the observed overes-
timation. The predominant factor in the Halpin–
Kardos calculation of the modulus, below Tg, is
the whisker modulus, but literature shows that
this latter must be considered correct. Therefore,
there is no obvious explanation of the overestima-
tion of the composite modulus by the Halpin–
Kardos equation. It can, however, be concluded
that the modulus of the composite below its glass
transition temperature is in between the values
predicted by the two models. Thus, the reinforce-
ment in this domain can be described by a charge
transfer.

Figure 3 shows the comparison between the
Halpin–Kardos equation, the cluster model, and
the experimental values measured above Tg.

Generally, with fiber-filled elastomer, the filler
efficiency is much smaller, even when these com-
posites are unidirectional.34–36 The modulus of
the composites increases exponentially with whis-
ker content, and yet both models predict a more or
less linear increase. Thus, the reinforcing effect
above Tg cannot be described by both models
used. However, it is noteworthy that the Halpin–
Kardos offers a closer description of the experi-
ments.

If the results below Tg and above Tg are now
considered, it can be concluded that the cluster
model or the Halpin–Kardos equation are not sat-
isfactory. The cluster model is better below Tg
than the Halpin–Kardos prediction, but it is the
contrary above Tg. In term of modulus drop, both
models are equivalent and make a quite similar
prediction.

Viscoelastic Behavior

The DMA experiments also provides the evolution
of the viscous modulus G0 and the loss factor
curves of the composites as a function of temper-
ature (compare Figs. 4 and 5). The a and b relax-
ations are observed, respectively, at around 150
and around 300 K. The behavior of plasticized
PVC confirms the literature results.16 The a re-
laxation, like the glassy transition, is widened by
the presence of the plasticizer and shifted to-
wards a lower temperature; the b relaxation is
decreased by the presence of the plasticizer and

Figure 4 Evolution of the viscous modulus as a func-
tion of temperature measured by DMA on composite
samples (frequency 5 0.1 Hz); same legend as for Fig-
ure 1.

Figure 5 Loss factor as a function of temperature
measured by DMA on composite samples (frequency
5 0.1 Hz); same legend as for Figure 1.
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partly overlaps with the a relaxation. These two
relaxations are still present in reinforced pPVC.
The whiskers do not seem to shift the tan f peak
temperature of the relaxations measured at 0.1
Hz. These results confirm the DSC measurements
that showed that Tg remains unchanged with
whiskers content. Similar observations have been
reported for various composite systems.37

The maximum of G0 is shifted towards the high
temperatures, and its value increases with in-
creasing whiskers content. We observe an in-
crease of tan f measured in the rubber plateau
domain. Nielsen38 stated that it could be gener-
ated by interfiller slippage, which occurs when
the matrix does not constrain the filler anymore
because of a difference in the dilatation coeffi-
cients between filler and matrix. This effect re-
quires the presence of aggregates that are not
present in the present case, as shown by the op-
tical observation of the composites and SANS ex-
periments.24 The maximum of the tan f peak for
the a relaxation decreases with increasing the
whisker content as reported for other filled com-
posites.37 The decrease of the b relaxation maxi-
mum might result from the decrease of the a
relaxation, as these two relaxations overlap in
this temperature range. A simple decrease of the
volume fraction of the matrix cannot explain
these observations. Boluk assumed that a fraction
of the matrix is immobilized around the fillers.
Although the literature using this ap-
proach21,39–41 is relatively abundant, it is still
questionable as it is assumed that the interphase
has the same stiffness as the fillers.

In the present work, the principle of equiva-
lence between elastic and viscoelastic solu-
tions26,42 is applied to the Halpin–Kardos model.
This model is preferred to the cluster model since
it provides a simple analytical equation that is
easy to extend in the viscoelastic domain. This is
obtained by replacing the elastic modulus by com-
plex values. As seen previously, the parameters
used do not allow a good fit for G9 nor G0 (compare
Fig. 6). However, it is interesting to notice that
the Halpin–Kardos model leads to an increase in
the G0 peak.

Limitations in modelling of the composite be-
havior is much more drastic above Tg than below
Tg. Below Tg, the Halpin–Kardos model leads to
an almost linear increase of the modulus versus
the whiskers content, such as GcHK 5 4.1011f
1 Gm (c and m subscripts refer, respectively, to
the matrix and the composite), as shown in Figure
2. The experimental increase of the modulus fol-
lows Gc 5 1011f 1 Gm. It is, therefore, possible

to extrapolate an empirical law below Tg, be-
tween the experimental values and the ones pre-
dicted by Halpin–Kardos, as follows: Gc 5 (GcHK
2 Gm) 3 f 3 0.25 1 Gm. In fact, this could
correspond to a corrective factor to the quasi-
isotropic representation of the whiskers. The cor-
rection has a relatively low effect on the model
above Tg since this latter already drastically un-
derestimates the experimental data. It leads to
the Halpin–Kardos model being considered only
in terms of the prediction of the modulus decrease
during the glass transition. But this correction,
the modulus decrease, is still incorrectly de-
scribed.

An interphase of immobilized matrix in the
neighborhood of the whiskers might be an expla-
nation of the high values of experimental data.
This interphase should have about the same form
factor as the whiskers, with the modulus of the
matrix alone measured below Tg. The assumption
is made that our composite is equivalent to a
matrix filled with cellulose whiskers and pPVC
whiskers with the same aspect ratio and no glass
transition (in the expected temperature domain of
the matrix glass transition). This assumption is
consistent with the increase of tan f with the
increasing whisker content well above Tg, that is,
in the range of 340–400 K. Indeed, this phenom-
enon could be explained by the beginning of the
glass transition of this interphase.

Figure 6 Viscoelastic modulus of a composite with
12.4% vol. of whiskers content: G9(e) and G0(E). Com-
parison with the viscoelastic prediction of the Halpin–
Kardos model: G9( ) and G0(– – –).
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To model this feature, the Halpin–Kardos
model is applied in two steps, firstly to account for
the matrix containing pPVC whiskers, and then
secondly to calculate the reinforcing effect due to
the cellulose whiskers. The adjustable parameter
is the volume fraction of pPVC, which remains
stiff. It is adjusted so that the glass transition be
described well, considering both G9 and G0. The
best fit is obtained for a volume fraction of immo-
bilised matrix equal to the whisker volume frac-
tion (compare Figs. 7 and 8). This suggests the
presence of an interphase of about 3 nm thickness
(calculated from the cellulose whisker dimen-
sions) around each whisker. This value is rela-
tively small and is of the same order of magnitude
as the gyration radius of PVC chain.

Effect of an Eventual Whiskers Connectivity

It is clearly visible on Figures 7 and 8 that this
model, although it provides an improvement in
the description of the composites, cannot accu-
rately describe the reinforcement effect observed
in the rubber plateau domain. In order to under-
stand this under-estimation, it is worth consider-
ing a possible effect of whiskers percolation. A
computer simulation of randomly dispersed whis-
kers leads to the calculation of a geometric perco-
lation threshold of 0.8 vol %. This low value can
explain the mechanical behavior of the compos-
ites made by Favier et al.,12 in which the material

processing allows the formation of hydrogen
bonds between the whiskers. In the present case,
during the processing of the materials, the hot-
mixing step should drastically limit the formation
of hydrogen bonds between whiskers. Moreover,
the presence of rigid whisker network would lead
to a quasi-constant rubber plateau. In fact, we
observe a slope of the composite rubber plateau
that is quite similar to the one of the matrix.
However, since the interwhisker distance is
small, it is possible that polymer chains immobi-
lized on the whisker surfaces make a link be-
tween the whiskers, creating a flexible network
whose the properties are largely dependent on the
modulus of these chains. To check this assump-
tion, swelling experiments were performed on the
plasticized PVC and the composites with different
whiskers contents, as described in the experimen-
tal section. Methyl ethyl ketone does not dissolve
pPVC probably because of microcrystalline do-
mains of the more regular syndiotactic sequences
that are present in PVC.43,44 On the other hand,
specific interactions between carbonyl group
CAO of DOP and ClOCH group of PVC45 can
create bridges between the polymer chains.46 As-
suming that such links act as crosslinking nodes,
the molecular weight between nodes Mc can be
determined by the Rehner–Flory equations,47

from the swelling ratio. This requires the addi-
tional assumptions (1) of a small molecular
weight between crosslink in comparison with the
initial weight of the polymer chains, (2) of a

Figure 8 Modelling of the elastic shear modulus of
the composite with 12.4% vol. whiskers, by a two step
Halpin–Kardos model considering 12.4% vol. of immo-
bilized matrix domains; same legend as for Figure 7.

Figure 7 Modelling of the elastic shear modulus of
the composite with 6.6% vol. whiskers, by a two step
Halpin–Kardos model, considering 6.6% vol. of immo-
bilized matrix domains. G9 of the unreinforced matrix
(D), G9 of the composite (E), G9 of the modelling
( ), G9 of the simulated matrix in presence of whis-
kers (– – –).
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Gaussian statistic for the polymer chains, and,
finally, (3) of small deformations in the case of
which there is no chain reptation, as follows:

Mc 5

VsrpF 2
fQm

2 S 1
QmD1⁄3G

lnS1 2
1

Qm
D 1

1
Qm

1 xS 1
Qm

D 2 (7)

Vs is the molar volume of the solvent, x is the
interaction parameter, f is the node functionality,
and rp is the matrix density. Vs 5 90.12 cm3/
mol; rp 5 1.35 g/cm3; the interaction parameter
x is estimated from the interaction parameter
values of the THF (x 5 0.14) and the acetone
(x 5 0.63). It is necessary between these 2 values
since it was noticed experimentally that MEK is a
better solvent than acetone, but not as good a
solvent as THF. It was taken as x 5 0.2. In fact,
this value has only a small influence on the re-
sults discussed below.

Figure 9 shows that an increasing whisker con-
tent leads to a decrease of the calculated Mc value
of the composite. The same observations were
done by Ibarra21 with short-fiber elastomer com-
posites and by Bogonuk in filled elastomers.20

Following their conclusion, the presence of ad-
sorbed chains on the whiskers surface seems to
act like supplementary crosslink points.

An attempt was made to estimate the mechan-
ical behavior of such a network in which the in-
terwhisker bonds are assumed to result of ad-
sorbed polymer chains. The calculation based on
previous work14 was focused on the whiskers’
skeleton properties. From the simulation of a ran-
domly dispersed whiskers network in a cubic cell,
a set of nodes was obtained, considering all the
intersection points of whiskers. Two whiskers
were considered to cross whenever they met
within a distance lower than their diameter. The
boundary nodes were defined as the intersection
between the whiskers and the cubic faces. Whis-
ker segments between nodes were assumed to be
linked together within two extreme conditions. In
the first case, there was no force transfer at the
nodes; whisker segments acted as bars. In the
second case, whiskers were assumed to act as
Euler beams; the links between them were per-
fect, that is, infinitely rigid, so that both displace-
ments and rotations were fully transmitted. The
calculation of beam and bar network mechanical
properties gave the lower and upper bounds, re-
spectively, of the real whiskers network.

The Young modulus of the whiskers were
taken of 130 GPa with an aspect ratio of 1/67 and
Poisson ratio of 0.3. The network stiffness was
calculated within the two hypotheses (bar or
beam elements) with the CASTEM 2000 finite
elements code. Homogeneous strain conditions
were applied at the boundaries; that is, the dis-
placements of the boundary nodes were set so
that they fulfill a prescribed displacement gradi-
ent. The elastic parameters of the network were
deduced from an identification of the external
work with the elastic deformation energy. Due to
the limitation of computer memory, the maxi-
mum whiskers number, used for the determina-
tion of network nodes, was 2000. This number
depended on the whiskers volume fraction since
the higher was this latter; the more numerous
were the nodes and the segments of the simulated
network. For this reason, the calculations were
done for a maximum whiskers concentration of
7%. The isotropy of the simulated networks was
checked, meaning that the whisker number used
was sufficient. We noticed a dispersion of the re-
sults, which increased when the whisker volume
fraction decreased. The results are plotted in Fig-
ure 10.

The simulation of the rigid network (beams)
leads to a shear modulus lower than in previous
reports.14 This is probably due to the higher num-
ber of whiskers considered in this work, leading to
a more realistic modelling of the network. It is

Figure 9 Inter-crosslink weight Mc calculated from
swelling measurements, as a function of the whisker
volume fraction, and trend line.
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noticeable that the percolation threshold appears
clearly as an increase of the modulus. Values
calculated for bar element simulation are widely
spread. In that case, the reinforcement effect is
only provided by a tetrahedralization of the bars,
which is statistically less frequent than the sim-
ple intersection of whiskers. Increasing the num-
ber of elements leads to a modulus which tends
toward 2 Mpa for volume fraction in between 5
and 7%. For lower whiskers content, no reinforce-
ment effect is detected: the intersection points are
too few statistically to allow the occurrence of
efficient tetrahedralization of the elements. The
calculation for bar element networks leads to an
underestimation of the modulus since each whis-
ker segment is supposed not to transmit momen-
tum, even between bars of the same whiskers.

Whatever be the limitation of this modelling, it
shows that even a low transfer of stress between
whiskers can provide a reinforcement of the com-
posite in which they are embedded. For compari-
son, experimental data for composites, measured
at 333 K, are plotted in Figure 10. They are in
between the two calculated bounds. Besides, in
Figure 3, the discrepancy between the Halpin–
Kardos model and the experimental values mea-
sured above Tg becomes evident for whisker con-
tents higher than 4%, that is, close to the calcu-
lated threshold of reinforcement of bar networks.

CONCLUSION

New thermoplastic matrix nanocomposites with
well-dispersed fillers have been prepared. The
particularities of these fillers reside in their high
aspect ratio and, due to their very small size, an
unusual large interface area. The mechanical
properties measured at small deformation re-
vealed all the potential interest in such materials.
Advantages include their transparency and their
suitability for processing as small thick pieces.
The theoretical models based on mean field as-
sumption, which took into account the shape and
the anisotropy of the mechanical properties of the
whisker fillers, did not fully fit the experimental
values of the modulus if the stiffness and size
were those of each phase considered indepen-
dently.

Among the models tested, the Halpin–Kardos
equation was chosen for its simplicity and ability
to account for the viscoelastic behavior. It was
found to overestimate by about a factor of 2 the
modulus below Tg, and to underestimate by a
much higher factor the modulus in the rubber
plateau region. To overcome the overestimation
below Tg, a correction factor calculated from the
modulus of the composite below Tg was applied.
The existence of an interphase of immobilized
matrix in contact with the whisker surface was
assumed. Thus, the matrix of the composite was
described, in the first approximation, like a me-
dium containing whiskers of matrix without glass
transition and with the same aspect ratio as the
cellulose whiskers. With this assumption, the
composite was modelled in two steps with the
Halpin–Kardos equation applied successively for
the calculation of the modulus of the matrix and
then of the composite. However, calculated values
were still under-estimated, and this could be a
consequence of whisker connexity, which should
occur around 1 vol %.

The geometric percolation threshold of such
large aspect ratio cellulose whiskers is very low,
and so the assumed interphase might make a link
between the whiskers, thus allowing the forma-
tion of a flexible network. This scheme was sup-
ported by swelling experiments, which showed a
large decrease in swelling with increasing whis-
ker content. However, the existence of a part of
the matrix whose the properties are modified by
the whiskers was not revealed by DSC or isoch-
ronal DMA measurements. It might be due to
either the absence of relaxation within this inter-
phase or the lack of precision with these experi-
ments. Only an increase of the loss factor with

Figure 10 FEM simulated Young modulus for the
“flexible” network of bar elements (– – –) and for the
rigid network of beam elements (E and trend line

), as a function of the whisker volume fraction.
Comparison with experimental modulus measured at
333 K (e).
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whiskers content in the rubber plateau domain
was observed. A further study of the molecular
dynamic of the matrix mechanical spectroscopy
would be desirable because it could provide a com-
parison between the relaxation time of the matrix
with and without fillers and a better partition
between the different relaxations that occur. That
is the purpose of a further work.

The authors thank Elf-Atochem Society, the ADEME,
and the Ecotech program for their financial support,
the CEA for providing the Finite Element Code
CASTEM 2000, and the CNUSC for calculation facili-
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